We perform following material testing for various materials such as


This is performed on samples either cut to size or mounted in a resin mold. The samples are polished to a fine finish, normally one micron diamond paste, and usually etched in an appropriate chemical solution prior to examination on a metallurgical microscope. Micro-examination is performed for a number of purposes, the most obvious of which is to assess the structure of the material. It is also common to examine for metallurgical anomalies such as third phase precipitates, excessive grain growth, etc. Many routine tests such as phase counting or grain size determinations are performed in conjunction with micro-examinations.


Macroetching is the procedure in which a specimen is etched and evaluated macro structurally at low magnifications. It is a frequently used technique for evaluating steel products such as billets, bars, blooms, and forgings. There are several procedures for rating a steel specimen by a graded series of photographs showing the incidence of certain conditions and is applicable to carbon and low alloy steels. A number of different etching reagents may be used depending upon the type of examination to be made. Steels react differently to etching reagents because of variations in chemical composition, method of manufacturing, heat treatment and many other variables.

Macro-Examinations are also performed on a polished and etched cross-section of a welded material. During the examination, a number of features can be determined including weld run sequence, important for weld procedure qualifications tests. As well as this, any defects on the sample will be assessed for compliance with relevant specifications. Slag, porosity, lack of weld penetration, lack of sidewall fusion and poor weld profile are among the features observed in such examinations. It is normal to look for such defects either by standard visual examination or at magnifications of up to 50X. It is also routine to photograph the section to provide a permanent record. This is known as a photomacrograph.

Grain Size Determination

In order to establish a scale for grain size, ASTM E112 shows charts with outline grain structures at various dimensions. This has led to a universally accepted standard by which grain sized range form 1 (very coarse) to 10 (very fine). A material's grain size is important as it affects its mechanical properties. In most materials, a refined grain structure gives enhanced toughness properties and alloying elements are deliberately added during the steel-making process to assist in grain refinement. Grain size is determined from a polished and etched sample using optical microscopy at a magnification of 100X.


There are three types of tests used with accuracy by the metals industry; they are the Brinell hardness test, the Rockwell hardness test, and the Vickers hardness test. Since the definitions of metallurgic ultimate strength and hardness are rather similar, it can generally be assumed that a strong metal is also a hard metal. The way the three of these hardness tests measure a metal's hardness is to determine the metal's resistance to the penetration of a non-deformable ball or cone. The tests determine the depth which such a ball or cone will sink into the metal, under a given load, within a specific period of time.

The followings are the most common hardness test methods used in today`s technology:

  1. Rockwell hardness test
  2. Brinell hardness

Copyright © 2015, All Rights Reserved. Designed & Developed by BRIGHT POINT